Aspergillus niger
not annotated - annotated - LINNAEUS only
21176790
Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-gamma-pyrone.
The genome sequencing of the fungus Aspergillus niger uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-gamma-pyrone family of polyketides. We deleted a non-reducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene we name albA is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of the naphtho-gamma-pyrone precursor for the 1,8-dihydroxynaphthalene (DHN) melanin/spore pigment. Our results show that the A. nigeralbA PKS is responsible for both the production of the spore pigment precursor and a family of naphtho-gamma-pyrones commonly found in significant quantity in A. niger culture extracts. The generation of an A. niger strain devoid of naphtho-gamma-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.
21277986
The molecular and genetic basis of conidial pigmentation in Aspergillus niger.
A characteristic hallmark of Aspergillus niger is the formation of black conidiospores. We have identified four loci involved in spore pigmentation of A. niger by using a combined genomic and classical complementation approach. First, we characterized a newly isolated color mutant, colA, which lacked pigmentation resulting in white or colorless conidia. Pigmentation of the colA mutant was restored by a gene (An12g03950) which encodes a putative 4'phosphopantetheinyl transferase protein (PptA). 4'Phosphopantetheinyl transferase activity is required for the activation of Polyketide Synthases (PKSs) and/or Non-Ribosomal Peptide Synthases (NRPSs). The loci whose mutation resulted in fawn, olive, and brown color phenotypes were identified by complementation. The fawn phenotype was complemented by a PKS protein (FwnA, An09g05730), the ovlA mutant by An14g05350 (OlvA) and the brnA mutant by An14g05370 (BrnA), the respective homologs of alb1/pksP, ayg1 and abr1 in A. fumigatus. Targeted disruption of the pptA, fwnA, olvA and brnA genes confirmed the complementation results. Disruption of the pptA gene abolished synthesis of all polyketides and non-ribosomal peptides, while the naphtho-gamma-pyrone subclass of polyketides were specifically dependent on fwnA, and funalenone on fwnA, olvA and brnA. Thus, secondary metabolite profiling of the color mutants revealed a close relationship between polyketide synthesis and conidial pigmentation in A. niger.
21324422
A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus.
Several Aspergillus species are well-known for the production of a variety of organic acids. In this study, a cloned based transcriptomics approach was used to identify genes crucial in the biosynthesis pathway for one of these acids, itaconic acid. From a number of different Aspergillus terreus controlled batch fermentations, those cultures with the largest difference in itaconic acid titer and productivity were selected for mRNA isolation. cDNAs derived from these mRNA samples were used for subsequent hybridization of glass slide arrays based on a collection of 5000 cDNA clones. A selection of 13 cDNA clones resulting in the strongest (>10-fold) differential hybridization signals were identified and subsequently the inserts of these clones were sequenced. Sequence analysis revealed the presence of in total five different gene inserts among the sequenced clones. From one of these sequences, encoding a gene of the MmgE-PrpD family, the full length coding region was shown to encode one of the crucial itaconic acid pathway enzymes cis-aconitate decarboxylase, by heterologous expression in Escherichia coli. Expression of this gene in Aspergillus niger, which is a natural citric acid producer, resulted in itaconate production. Genome analysis suggests that in A. terreus the cis-aconitate decarboxylase gene is part of an itaconate acid related gene cluster including genes encoding two pathway specific transporters and a Zinc finger protein. Interestingly, this cluster is directly linked to the large lovastatin gene cluster.